Expert Details

Expert in Nanotechnology for Fiber Reinforced Composites, Resin Matrix Systems, Phenolic Resin Technology

Expert ID: 724166 New Jersey, USA

Request Expert

Expert is very knowledgeable in composite materials involving a reinforcing fiber [such as E and S glass, PAN, Pitch, and high tow Carbon, Boron, Quartz, and Organic fibers such as Aramid and ultrahigh molecular weight polyethylene (UHMWPE)] and an organic matrix resin based on thermosetting and thermoplastic resins with the TS resins being polyesters, vinyl esters, epoxies, phenolics, BMI and cyanate esters while PP, PEEK, and PPS are the TP resins. He is particularly knowledgeable in epoxy, phenolic and cyanate ester resins used in many structural and flame retardant composites. He provides guidelines/recommendations related to composite features such as high strength, lightweight, corrosion/chemical resistance, low coefficient of thermal expansion (CTE), good vibration damping for excellent fatigue/crash worthiness, design/fabrication flexibility, and reduced part count within the resulting composite. Weight reduction with comparable strength is viewed as the main driver in providing fuel efficiency for future transportation vehicles. He is aware of composite challenges like material/component costs, many matrix resins are combustible/flammable; some porosity/void content, relatively new material (~ 50 years) compared with wood, metals, glass and the limited knowledge of composites by many designers. Composites uses are in market areas such as transportation, construction, marine, anticorrosion, electrical/electronic, consumer goods, appliances, aircraft, and miscellaneous. He has been engaged in filament wound gas containment tanks, fire resistant components like filament wound deluge pipe and pultruded flame resistant decking for oilfield offshore platforms, some work in golf club shafts and tennis rackets. He has consulted in the areas of aircraft interiors involving paneling, honeycomb, cargo liners, prepreg, rocket nozzles and nozzle insulation. Cyanate esters rather than phenolic resins are being evaluated in carbon carbon composites as well as in reactive bonded SiC materials for improved SiC products. He is familiar with many processes that are used to fabricate composites such as hand lay up, prepreg, sheet molding compound, filament winding, pultrusion, and resin transfer molding (RTM). He is currently providing technical assistance in vacuum assisted resin transfer molding (VARTM), a variant of RTM, which has great potential to fabricate large composite parts with low void content, low cost tooling, and without costly autoclave cure. He is involved in a selective laser-sintering program for rapid prototyping/rapid manufacturing requiring FR polymers as well as high Tg resins.
Most high performance and advanced composite systems have CF as the reinforcing fiber. The surge of interest in CF composites is due to the current, commercial success of Boeing’s 787, Dreamliner which will contain ~ 50% mainly CF composites. The current shortage in CF availability has placed some developmental programs requiring CF on hold or has shifted to the use of high tow CF or glass/CF hybrids and process modifications. He is familiar with new TS systems are being developed for composites and include phenolic-like systems such as Benzoxazines, non-formaldehyde cured phenolics, polyimides, specialty resins and newly developed fibers.
He is actively involved in Nanotechnology to develop selected nanomodified TS and TP resins to incorporate them into fiber reinforced composites for multi-functional benefits. Nanoparticles such as nanoclay, nanosilica, carbon nanofibers, single and single/multi-wall carbon nanotubes, POSS, nano-SiC particles and whiskers are used in most of his programs. Novel flame retardant TP resins are being developed by nano-modification of resins accompanied by synergists.

During his industrial career, Expert has been involved in resin chemistry that encompasses the chemical structural characteristics of organic polymeric resins such as thermoplastic, thermosetting, elastomers, rubbers and natural resins. The distinguishing features of various polymerization methods require either addition/chain method of polymerization or condensation or step growth technique to manufacture an assortment of polymeric resins. His research activities have encountered typical condensation resins as polyamides, polyesters, polyurethanes, polycarbonates, polyaryl ethers, polyacetals, phenolics, epoxies, unsaturated polyesters, vinyl esters, urea and/or melamine formaldehyde, and other lesser-known polymers. These are reactive low MW oligomers that undergo cross-linking into thermosetting resins. He is an expert in phenolic resin chemistry from raw material components, resin manufacture, resin formulation, and many end use applications. His knowledge of phenolics extends to other closely related F based resins such as urea/F and melamine/F resins and their respective uses. He also has worked with epoxies, cyanate esters, and non-formaldehyde cured phenolics involving the development of formulations, fabrication and cure/post cure conditions. Addition or chain type resins represent polyolefins (PE, PP), PAN, polystyrenes, PMMA, polyvinyl chloride, polyvinyl acetate, and many others. Copolymers are also obtained within these families of resins. Different conditions are used to prepare addition polymers ranging from radical initiation for random linear or branched polymers to ionic chain polymerization (anionic or cationic). He has prepared non-crystallizing caprolactone polymers as permanent plasticizers for PVC using ring opening polymerization of cyclic monomers like lactones (caprolactone). PVC possesses low crystallization and a Tg of 81ºC. PVC requires thermal additives or stabilizers (acid acceptors) to process and avoid the release of HCl on melt processing. Large quantities of PVC are flexibilized with plasticizers (internal lubricants) that are fugitive and escape during the lifetime of the product. Hence the quest for a permanent PVC plasticizer was the objective of the program. These plasticized PVC materials enjoy large markets for upholstery, film, toys, others. He was engaged in preparing and transforming polymers based on Polyvinyl acetate (PVAc) that were hydrolyzed into polyvinyl alcohol (PVOH) and isolated or the intermediate PVOH was reacted with formaldehyde or butyraldehyde to form acetals, either polyvinyl formal or polyvinyl butvar. These transformation products enjoy large volume use in water soluble coatings, textile sizing agents (PVOH) while the acetal products are used in adhesives, coatings, wash primers and cross-linkable systems. He conducted research on the preparation of octafluoro-di-para-xylylene that at elevated temperatures in vacuum generates the tetrafluoro-xylylene monomer and spontaneously polymerizes into tetrafluoro-poly-para-xylylene as a conformal coating on the substrate that is present in the vacuum chamber. He developed a chromium ester catalyst for the preparation of polyolefins. High temperature polyaryl ethers were developed in the 1960’s and involved polymeric nucleophilic displacement to obtain PEEK, polysulfone and others. He has formulated and transformed polyaryl ethers into prepregs for fiber reinforced composites. Recent research activities involve the use of nanotechnology being applied to various resins to improve resin performance characteristics at the nanoscale level. Selected nanoparticles such as nanoclay, nanosilica, carbon nanofiber, POSS, single and multi wall carbon nanotubes, and nano-SiC particles/whiskers are evaluated in many TS and TP materials

He is actively involved in assisting a Biomaterials company in developing marketing/technical strategy for lignin as a partial phenol replacement in phenolic resins, as a potential carbon fiber precursor, and reinforcing agent in thermoplastic and rubber resins.He is assisting in the selection of nanomaterials to nanomodify phenolic resin for use in fiberbonding, foam area, abrasives. Suitable high shear equipment is specified, analyses of cured nanomodified phenolic by TEM, TGA of anticipated increased heat strength, conduct trials in fiberbonding, foam, and abrasives. Analyses of new nanomodified phenolic products and proposed marketing strategy for market introduction versus conventional phenolic materials. Workshops/lectures on Nanotechnology for Executive management and its application/utility for improved product portfolio.He is examining the use of selected nanomaterials to flame retard selective thermoplastic (TP) materials with selective synergists to lead to significantly improved thermoplastic materials that are flame resistant, higher strength/high glass transition temperature, and better moisture resistance TP material that avoids the current hazardous flame retardant materials. The use of Nanomaterials results in multiplicity of functionality in the TP material besides flame resistance - higher Tg, higher strength, moisture resistance. Workshops/lectures on Nanotechnolgy presented to middle and executive management. He has suggested a suitable RTM phenolic resin for a client that is planning to market a very low F (Flame), S (smoke), and T (toxicity) fiber reinforced component for the US and Asian (Japanese) market. The newly developed FST composite is expected to be in great demand and sell at a premium price in those applications that require FST performance but are currently lacking those attributes. The RTM phenolic resin composite system is expected to be fully integrated into an existing RTM process with some modification. Workshop/lecture presentations to R&D/Developement personnel and Executive management. Some special training required in handling phenolic resins (perishability and hazards) as compared to existing resins.Workshop on various resin matrix systems, fibers, processes used to make fiber reinforced composites to provide an overview of the strategy necessary to enter the composites market as a supplier of a specific resin matrix. Comparisons of different resins, selection factors, proposed pricing, market opportunities, current and future applications, strength and weaknesses of current resin matrices, consolidation of some manufacturers in the resin matrix arena, vertical and horizontal integration potential, competitors, resin volumes, price of composite on a pound basis to replace metal or wood, FST characteristics, commodity vs high performance vs advanced market areas and pricing structure of these materials, automotive, electronics, transportation, corrosion market areas are considered.

Education

Year Degree Subject Institution
Year: 1962 Degree: PhD Subject: Organic Chemistry Institution: Notre Dame University
Year: 1956 Degree: BS Subject: Chemistry Institution: St. John Fisher College

Work History

Years Employer Title Department
Years: 2000 to Present Employer: Undisclosed Title: Chief Scientist Department:
Responsibilities:
He is chief scientist involved in writing proposals for SBIR/STTR U.S. Government funded research as well as commercial companies.
Years Employer Title Department
Years: 1978 to Present Employer: Undisclosed Title: President Department:
Responsibilities:
He is actively engaged in Nanotechnology, Fiber reinforced composites,
resin matrix systems, and bio-based resins and fibers.
Years Employer Title Department
Years: 1964 to 1978 Employer: Union Carbide Corporation Title: Research Scientist Department:
Responsibilities:
He was involved in a variety of R&D programs with the last being involved in Phenolic Technology. He was International Technology Manager for Phenolic Business Center and travelled to all Carbide Phenolic joint ventures.

International Experience

Years Country / Region Summary
Years: 2007 to Present Country / Region: South America Summary: He is involved in provide technical assistance in Phenolic Chemistry.
Years: 2001 to 2003 Country / Region: France and Austria Summary: Technical assistance in Phenolic Chemistry.
Years: 1992 to 2000 Country / Region: Germany Summary: Assist in Epoxy and Phenolic Chemistry/Applications
Years: 2002 to 2002 Country / Region: Italy Summary: Water based materials for decorative laminates
Years: 1993 to 1994 Country / Region: Taiwan Summary: Fiber reinforced composites, honeycomb, resin matrix systems

Career Accomplishments

Associations / Societies
He is a SAMPE Fellow of the SAMPE Technical Society and a member of the American Chemical Society.
Professional Appointments
Member of ASM, Engineering Materials Achievement Award Selection Committee (2007-2010);
Member of Scientific Advisory Committee, Alfred University from 2001 to present;
Member of Scientific Advisory Committee, Texas State University from 1999 to 2004.
Publications and Patents Summary
He has published 4 books (3 on Phenolic Chemistry, other Advance Composites), 2 book chapters (nanotechnology and Phenolic chemistry) over 50 publications, 1 US patent application, 12 US patents, Many technical presentations, workshops, tutorials.

Additional Experience

Expert Witness Experience
Expert witness phenolic resin technology
Training / Seminars
1)Tutorial on Nanotechnology delivered to many SAMPE conferences;
2)Tutorial on Resin Matrix Systems delivered to SAMPE conferences prior to Nanotechnology topic;
Workshops on Phenolic and Epoxy Resin Technology
Vendor Selection
Large number of vendors have been contacted from large companies like Dupont to small companies involved in thermoplastic and thermosetting resins, fibers, additives, nanomaterials, flame retardants, testing, analyses, SLS materials
Marketing Experience
Experience in floral, orthotic insulation foams for the consumer markets, phenolic and epoxy resins marketing,

Fields of Expertise

Request Expert

Dev Tool:

Request: expert/nanotechnology-for-fiber-reinforced-composites-resin-matrix-systems-phenolic-resin-technology
Matched Rewrite Rule: expert/([^/]+)(?:/([0-9]+))?/?$
Matched Rewrite Query: experts=nanotechnology-for-fiber-reinforced-composites-resin-matrix-systems-phenolic-resin-technology&page=
Loaded Template: single-experts.php